首页 | 本学科首页   官方微博 | 高级检索  
     


A Hybrid Spur Compensation Technique for Finite-Modulo Fractional-N Phase-Locked Loops
Abstract: A finite-modulo fractional-$N$ PLL utilizing a low-bit high-order $DeltaSigma$ modulator is presented. A 4-bit fourth-order $DeltaSigma$ modulator not only performs non-dithered 16-modulo fractional-$N$ operation but also offers less spur generation with negligible quantization noise. Further spur reduction is achieved by charge compensation in the voltage domain and phase interpolation in the time domain, which significantly relaxes the dynamic range requirement of the charge pump compensation current. A 1.8–2.6 GHz fractional-$N$ PLL is implemented in 0.18 $mu{hbox {m}}$ CMOS. By employing high-order deterministic $DeltaSigma$ modulation and hybrid spur compensation, the spur level of less than $-$55 dBc is achieved when the ratio of the bandwidth to minimum frequency resolution is set to 1/4. The prototype PLL consumes 35.3 mW in which only 2.7 mW is consumed by the digital modulator and compensation circuits.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号