首页 | 本学科首页   官方微博 | 高级检索  
     


Patterns and mechanisms of phytoplankton variability in Lake Washington (USA)
Authors:Arhonditsis George B  Winder Monika  Brett Michael T  Schindler Daniel E
Affiliation:Department of Civil and Environmental Engineering, More Hall, Box 352700, University of Washington, Seattle, WA 98195, USA. georgear@duke.edu
Abstract:Temporal variability in lake phytoplankton is controlled largely by a complex interplay between hydrodynamic and chemical factors, and food web interactions. We explored mechanisms underlying phytoplankton interannual variability in Lake Washington (USA), using a 25-yr time series of water quality data (1975-1999). Time-series analysis and PCA were used to decompose chlorophyll data into modes of variability. We found that phytoplankton dynamics in Lake Washington were characterized by four seasonal modes, each of which was associated with different ecological processes. The first mode coincided with the period when the system was light limited (January-March) and phytoplankton patterns were driven by the amount of available solar radiation. The second mode (April-June) coincided with the peak of the spring bloom and the subsequent decline of phytoplankton biomass, and was largely controlled by total phosphorus levels and grazing pressure from cladoceran zooplankton. Evidence of co-dependence and tight relationship between phytoplankton and cladoceran dynamics were also found from July to October when a large portion of the phosphorus supply in the mixed layer was provided by zooplankton excretion. The fourth mode (November-December) was associated with the transition to thermal and chemical homogeneity and the winter phytoplankton minima (2-2.5 microg/l). Finally, we examined the effects of meteorological forcing and large-scale oceanic climate fluctuations (ENSO and PDO) on phytoplankton dynamics and assessed the significance of their role on the interannual variability in the lake.
Keywords:Phytoplankton dynamics   Interannual variability   Lake Washington   Ecological patterns   Phytoplankton-zooplankton interactions   Total maximum daily load (TMDL)
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号