首页 | 本学科首页   官方微博 | 高级检索  
     

社会协作的多智能体进化
引用本文:潘晓英,焦李成. 社会协作的多智能体进化[J]. 西安电子科技大学学报(自然科学版), 2009, 36(2): 274-280
作者姓名:潘晓英  焦李成
作者单位:(西安电子科技大学 智能感知与图像理解教育部重点实验室,陕西 西安 710071)
基金项目:国家高技术研究发展计划(863计划),高等学校博士学科点专项科研基金 
摘    要:提出了一种新的求解函数优化的算法.借鉴社会协作机制,定义可信任度表示智能体的历史活动信息,控制智能体间的相互作用; 引入“熟人关系网”模型构建和更新智能体的局部环境,利用多智能体之间的协作特性来加快算法收敛速度; 并构造了非一致变异算子保证智能体种群的多样性.仿真实验结果表明,与性能优越的多智能体遗传算法相比,该算法能以更少的函数评价次数找到精度更高的最优解.

关 键 词:函数优化  多智能体进化  社会协作机制  熟人关系网  收敛  
收稿时间:2007-12-26

Social cooperation based multi-agent evolutionary algorithm
PAN Xiao-ying,JIAO Li-cheng. Social cooperation based multi-agent evolutionary algorithm[J]. Journal of Xidian University, 2009, 36(2): 274-280
Authors:PAN Xiao-ying  JIAO Li-cheng
Affiliation:(Ministry of Education Key Lab. of Intelligent Perception and Image Understanding, Xidian Univ., Xi’an 710071, China) ;
Abstract:A Social Cooperation based Multi-Agent Evolutionary Algorithm (SCMAEA) which integrates the social cooperation mechanism and multi-agent evolution for numerical optimization is proposed. Using the social cooperation mechanism, trust degree, which denotes the historical information for agents, is defined to control the interaction between agents. At the same time, the ‘acquaintance net model is imported to construct and update the local environment of the agent. It improves the convergence rate by the cooperation characteristic of agents. Furthermore, adopting the non-uniform mutation operation improves the searching for optimal solutions in the local region and assures the diversity of the solution. Simulation results show that compared with the multi-agent genetic algorithm, the social cooperation based multi-agent evolutionary algorithm can find the optima by a smaller number of function evaluations.
Keywords:function optimization  multi-agent evolution  social cooperation mechanism  acquaintance net  convergence  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《西安电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西安电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号