首页 | 本学科首页   官方微博 | 高级检索  
     


HYDRODYNAMIC CHROMATOGRAPHY: THREE DIMENSIONAL LAMINAR DISPERSION IN RECTANGULAR CONDUITS WITH TRANSVERSE FLOW
Authors:T Takahashi  William N Gill
Affiliation:  a Department of Chemical Engineering, State University of New York at Buffalo, Amherst, NY, USA
Abstract:Experimental observations1,9 indicate much poorer separations than are predicted by two dimensional theory. The purpose of this work is to explain these differences and suggest ways in which system performance can be improved.

The large effect of span-wise variation in axial velocity caused by side walls on hydrodynamic separations carried out in rectangular conduits with transverse flow is studied theoretically. As the aspect ratio increases, the steady stale retentivity (convection coefficient) approaches an asymptotic value obtained by neglecting side wall effects. However, the dispersion coefficient does not reduce to that for a flow with no side walls. Indeed, the asymptotic steady state dispersion coefficient is at least six times larger than that obtained by two dimensional theory which neglects side wall effects. As the transverse Peclet number increases, the effect of side walls on the dispersion coefficient becomes much larger.

The present three dimensional theoretical predictions, in contrast to two dimensional ones, are in good agreement with the experimental data of Caldwell, et al.9 and Kesner, et al.1 on electrical field flow fractionation. The results indicate that side wall effects may be of major importance in hydrodynamic chromatography even when the aspect ratio is 70 or more.

The adverse effect of side walls may be avoided by having the membranes enclose thin annular regions rather than rectangular conduits. This should improve performance significantly.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号