首页 | 本学科首页   官方微博 | 高级检索  
     


Low temperature sputter deposition of SnOx:Sb films for transparent conducting oxide applications
Authors:J. Boltz  D. Koehl  M. Wuttig
Affiliation:
  • Institute of Physics (IA), RWTH Aachen University, 52056 Aachen, Germany
  • Abstract:SnOx:Sb films have been prepared by reactive dc magnetron sputtering from a metallic target, with the aim of evaluating the potential of SnOx:Sb as an attractive low-cost alternative to In2O3:Sn (ITO) for TCO applications. The deposition was performed without any additional heating of the substrates. The films were subsequently analysed regarding their optical, electrical and structural properties. Our results show that there is only a narrow process window for the sputter deposition of transparent and conducting tin oxide films at low temperature. A sharp minimum in resistivity of 4.9 mΩ cm is observed at an oxygen content of approximately 17% in the sputtering gas. Under these deposition conditions, the SnO2:Sb films turn out to be both highly transparent and crystalline. At lower oxygen content (10-15%) the SnOx:Sb films are substoichiometric, as revealed by Rutherford backscattering, and show a low transmission and high resistivity due to numerous defects and the presence of the SnO phase. At higher oxygen content (> 17%) excess oxygen is incorporated into the films, which is attributed to an increase of oxygen ion bombardment. This leads to a degradation of the electrical properties and a decrease of the density of the films, whilst the optical transmittance slightly improves.
    Keywords:Reactive dc magnetron sputtering (dcMS)   Transparent conducting oxides (TCO)   Antimony doped tin oxide (SnO2:Sb)   Low temperature process
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号