首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of bias voltage on microstructure and properties of Ti-doped graphite-like carbon films synthesized by magnetron sputtering
Authors:Yongxin Wang  Liping Wang  Guangan Zhang  RJK Wood
Affiliation:
  • a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
  • b National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering Sciences, University of Southampton, SO17 1BJ, UK
  • c Graduate University of Chinese Academy of Sciences, Beijing 100039, PR China
  • Abstract:Ti-doped graphite-like carbon (GLC) films with different microstructures and compositions were fabricated using magnetron sputtering technique. The influence of bias voltages on microstructure, hardness, internal stress, adhesion strength and tribological properties of the as-deposited GLC films were systemically investigated. The results showed that with increasing bias voltage, the graphite-like structure component (sp2 bond) in the GLC films increased, and the films gradually became much smoother and denser. The nanohardness and compressive internal stress increased significantly with the increase of bias voltage up to −300 V and were constant after −400 V. GLC films deposited with bias voltages in the range of -300--400 V exhibited optimum adhesion strength with the substrates. Both the friction coefficients and the wear rates of GLC films in ambient air and water decreased with increasing voltages in the lower bias range (0--300 V), however, they were constant for higher bias values (beyond −300 V) . In addition, the wear rate of GLC films under water-lubricated condition was significantly higher for voltages below −300 V but lower at high voltage than that under dry friction condition. The excellent tribological performance of Ti-doped GLC films prepared at higher bias voltages of −300--400 V are attributed to their high hardness, tribo-induced lubricating top-layers and planar (2D) graphite-like structure.
    Keywords:Graphite-like carbon (GLC) film  Bias voltage  Microstructure  Water environment  Tribological property
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号