首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌粒子群优化的SVM分类器研究
引用本文:李冬萍. 基于混沌粒子群优化的SVM分类器研究[J]. 计算机仿真, 2010, 27(4): 185-187,191
作者姓名:李冬萍
作者单位:昆明学院初等教育系,云南,昆明,650031
摘    要:支持向量机(SVM)分类器能较好地解决小样本、非线性、高维等分类问题,具有很强的实用性。然而,支持向量机训练参数的选择对其分类精度有着很大的影响。常用的支持向量机优化方法有遗传算法、粒子群算法都存在易陷入局部极值,优化效果较差的不足。为解决上述问题在粒子群优化算法中引入混沌思想,提出了基于混沌粒子群优化算法(CPSO)的SVM分类器优化方法,CPSO算法能提高种群的多样性和粒子搜索的遍历性,从而有效地提高了PSO算法的收敛速度和精度,更好的优化SVM分类器。并以网络异常入侵检测为研究对象进行仿真,实验结果表明,根据混沌粒子群优化的SVM分类器比传统算法优化的SVM分类器的精度高,速度快。

关 键 词:混沌  粒子群  支持向量机  参数选择  

Research on chaos particle swarm optimization-based SVM classifier
LI Dong-ping. Research on chaos particle swarm optimization-based SVM classifier[J]. Computer Simulation, 2010, 27(4): 185-187,191
Authors:LI Dong-ping
Affiliation:Department of Elementary Education/a>;Kunming Institute/a>;Kunming Yunnan 650031/a>;China
Abstract:Support vector machine can solve the classification problem with small samples,nonlinear and high dimensions,which has strong practicability.However,the classification accuracy of SVM is significantly affected by its training parameter.At present,genetic algorithm and particle swarm optimization algorithm are common optimization algorithm for SVM.However,these methods are easy to relapse into local extremum,so that optimization result might be bad.Thus,in the study,chaos thought is introduced in particle sw...
Keywords:Chaos  Particle swarm  SVM  Parameter selection  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号