首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of Bemethyl Biotransformation Pathways by Combination of LC–MS/HRMS and In Silico Methods
Authors:Daria A. Belinskaia  Elena I. Savelieva  Georgy V. Karakashev  Olga I. Orlova  Mikhail A. Leninskii  Nataliia S. Khlebnikova  Natalia N. Shestakova  Alexandra R. Kiskina
Affiliation:1.Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Pr. Torez 44, 194223 St. Petersburg, Russia; (E.I.S.); (G.V.K.); (O.I.O.); (M.A.L.); (N.S.K.); (N.N.S.); (A.R.K.);2.Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, Kapitolovo Station, G/P Kuzmolovsky, Vsevolozhsky District, Leningrad Region, 188663 Kuzmolovsky, Russia
Abstract:Bemethyl is an actoprotector, an antihypoxant, and a moderate psychostimulant. Even though the therapeutic effectiveness of bemethyl is well documented, there is a gap in knowledge regarding its metabolic products and their quantitative and qualitative characteristics. Since 2018, bemethyl is included to the Monitoring Program of the World Anti-Doping Agency, which highlights the challenge of identifying its urinary metabolites. The objective of the study was to investigate the biotransformation pathways of bemethyl using a combination of liquid chromatography-high-resolution mass spectrometry and in silico studies. Metabolites were analyzed in a 24 h rat urine collected after oral administration of bemethyl at a single dose of 330 mg/kg. The urine samples were prepared for analysis by a procedure developed in the present work and analyzed by high performance liquid chromatography–tandem mass spectrometry. For the first time, nine metabolites of bemethyl with six molecular formulas were identified in rat urine. The most abundant metabolite was a benzimidazole–acetylcysteine conjugate; this biotransformation pathway is associated with the detoxification of xenobiotics. The BioTransformer and GLORY computational tools were used to predict bemethyl metabolites in silico. The molecular docking of bemethyl and its derivatives to the binding site of glutathione S-transferase has revealed the mechanism of bemethyl conjugation with glutathione. The findings will help to understand the pharmacokinetics and pharmacodynamics of actoprotectors and to improve antihypoxant and adaptogenic therapy.
Keywords:bemethyl, 2-(ethylthio)benzimidazole, actoprotector, doping, rat urine, metabolite, LC–  MS/HRMS, in silico metabolism prediction, glutathione S-transferase, molecular docking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号