首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium stimulates intramitochondrial cholesterol transfer in bovine adrenal glomerulosa cells
Authors:N Cherradi  MF Rossier  MB Vallotton  AM Capponi
Affiliation:Division of Endocrinology and Diabetology, Department of Medicine, Faculty of Medicine, CH-1211 Geneva, 14 Switzerland.
Abstract:In adrenal glomerulosa cells, angiotensin II (Ang II) stimulates aldosterone synthesis through rises of cytosolic calcium (Ca2+]c). The rate-limiting step in this process is the transfer of cholesterol to the inner mitochondrial membrane, where it is converted to pregnenolone by the P450 side chain cleavage enzyme. The aim of the present study was to examine the effect of changes in Ca2+]c and of Ang II on intramitochondrial cholesterol distribution. Freshly prepared bovine zona glomerulosa cells were submitted to a cytosolic Ca2+ clamp (600 nM) or stimulated with Ang II (10 nM). Mitochondria were isolated and subfractionated into outer membranes (OM), inner membranes (IM), and contact sites (CS). Cholesterol content was determined by the cholesterol oxidase assay. Stimulation of intact cells with Ca2+ led to a marked decrease in cholesterol content of OM (to 54 +/- 24% of controls, n = 5) and to a concomitant increase of cholesterol in CS and IM (to 145 +/- 14%, n = 5). When glomerulosa cells were exposed to Ang II, a marked increase of cholesterol in CS occurred (to 172 +/- 16% of controls, n = 5). No significant changes were detected in OM cholesterol, suggesting a stimulation of cholesterol supply to the mitochondria in response to Ang II. Cycloheximide specifically and significantly reduced Ca2+-activated cholesterol transfer to CS and IM. In conclusion, our data indicate that one of the main functions of the Ca2+ messenger is to increase cholesterol supply to the P450 side chain cleavage enzyme by enhancing endogenous intermembrane cholesterol transfer to a mitochondrial site containing the enzymes responsible for the initial steps of the steroidogenic cascade.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号