首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进MEDA算法的脑电情绪识别
引用本文:何群,李冉冉,付子豪,江国乾,谢平. 基于改进MEDA算法的脑电情绪识别[J]. 仪器仪表学报, 2021, 0(12): 157-166
作者姓名:何群  李冉冉  付子豪  江国乾  谢平
作者单位:1.燕山大学电气工程学院 河北省测试计量技术及仪器重点实验室
基金项目:国家自然科学基金(U20A20192,62076216)项目资助
摘    要:针对普通机器学习算法与迁移学习在应用方面的局限性,利用改进流形嵌入分布对齐算法(MEDA)算法解决跨被试情绪识别中准确率低的问题.其中MEDA通过流行特征变换来减小域之间的数据漂移,并能够自适应定量估计边缘分布和条件分布的权重大小.针对特征维度大且有可能存在不良特征的问题,提出改进MEDA算法,即引入改进最小冗余最大相...

关 键 词:情绪识别  特征选择  迁移学习  流行嵌入分布对齐算法

EEG emotion recognition based on the improved MEDA
He Qun,Li Ranran,Fu Zihao,Jiang Guoqian,Xie Ping. EEG emotion recognition based on the improved MEDA[J]. Chinese Journal of Scientific Instrument, 2021, 0(12): 157-166
Authors:He Qun  Li Ranran  Fu Zihao  Jiang Guoqian  Xie Ping
Affiliation:1.Key Laboratory of Measurement Technology and Instrumentation Hebei Province, Institute of Electric Engineering, Yanshan University
Abstract:The limited applications of the traditional machine learning algorithms and the transfer learning algorithm are considered inthis study. The improved manifold embedded distribution alignment (MEDA) algorithm is utilized to improve the detection accuracy inthe cross-subject emotion recognition. The MEDA algorithm in the manifold space could reduce the data drift between domains by popularfeature transformation, which can adaptively and quantitatively estimate the weights of edge distribution and conditional distribution. Thisarticle proposes an improved manifold space distribution alignment algorithm to address the problems of large feature dimension andpossible bad features. An improved minimum redundancy maximum correlation algorithm is introduced for feature selection. Thecomputational complexity is reduced, the associated features are selected, and the decision-level fusion on multiple groups of recognitionresults in multi-source domain is performed to further improve the transfer learning effect. The analysis results of SEED data set and themeasured data set show that the distribution alignment algorithm in the manifold space is better than those of the support vector machine,transfer component analysis and joint distribution adaptation. The overall recognition accuracy is improved by 8. 97% , 4. 00% , and2. 89% , respectively. The improved distribution alignment algorithm in manifold space has improved the recognition accuracy of eachsubject, and the overall recognition accuracy is improved by 3. 36% . Therefore, the effectiveness of the proposed method is verified.
Keywords:emotion recognition   feature selection   transfer learning   manifold embedded distribution alignment algorithm
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号