首页 | 本学科首页   官方微博 | 高级检索  
     


Variational principles in dissipative electro‐magneto‐mechanics: A framework for the macro‐modeling of functional materials
Authors:C Miehe  D Rosato  B Kiefer
Affiliation:Institute of Applied Mechanics, Chair I, University of Stuttgart, 70550 Stuttgart, Pfaffenwaldring 7, Germany
Abstract:This paper presents a general framework for the macroscopic, continuum‐based formulation and numerical implementation of dissipative functional materials with electro‐magneto‐mechanical couplings based on incremental variational principles. We focus on quasi‐static problems, where mechanical inertia effects and time‐dependent electro‐magnetic couplings are a priori neglected and a time‐dependence enters the formulation only through a possible rate‐dependent dissipative material response. The underlying variational structure of non‐reversible coupled processes is related to a canonical constitutive modeling approach, often addressed to so‐called standard dissipative materials. It is shown to have enormous consequences with respect to all aspects of the continuum‐based modeling in macroscopic electro‐magneto‐mechanics. At first, the local constitutive modeling of the coupled dissipative response, i.e. stress, electric and magnetic fields versus strain, electric displacement and magnetic induction, is shown to be variational based, governed by incremental minimization and saddle‐point principles. Next, the implications on the formulation of boundary‐value problems are addressed, which appear in energy‐based formulations as minimization principles and in enthalpy‐based formulations in the form of saddle‐point principles. Furthermore, the material stability of dissipative electro‐magneto‐mechanics on the macroscopic level is defined based on the convexity/concavity of incremental potentials. We provide a comprehensive outline of alternative variational structures and discuss details of their computational implementation, such as formulation of constitutive update algorithms and finite element solvers. From the viewpoint of constitutive modeling, including the understanding of the stability in coupled electro‐magneto‐mechanics, an energy‐based formulation is shown to be the canonical setting. From the viewpoint of the computational convenience, an enthalpy‐based formulation is the most convenient setting. A numerical investigation of a multiferroic composite demonstrates perspectives of the proposed framework with regard to the future design of new functional materials. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:variational methods  functional materials  multiferroic composites  electro‐mechanics  magneto‐mechanics  constitutive update algorithms  finite element methods for coupled problems
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号