首页 | 本学科首页   官方微博 | 高级检索  
     


Solution of FE‐BE coupled eigenvalue problems for the prediction of the vibro‐acoustic behavior of ship‐like structures
Authors:Michael Junge  Dominik Brunner  Lothar Gaul
Affiliation:Institute of Applied and Experimental Mechanics, University of Stuttgart, 70550 Stuttgart, Germany
Abstract:To predict the vibro‐acoustic behavior of structures, both a structural problem and an acoustic problem have to be solved. For thin structures immersed in water, a strong interaction between the structural domain and fluid domain occurs. This significantly alters the resonance frequencies. In this work, the structure is modeled by the finite element method. The exterior acoustic problem is solved by a fast boundary element method employing hierarchical matrices. An FE‐BE formulation is presented, which allows the solution of the coupled eigenvalue problem and thus the prediction of the coupled eigenfrequencies and mode shapes. It is based on a Schur complement formulation of the FE‐BE system yielding a generalized eigenvalue problem. A Krylov–Schur solver is applied for its efficient solution. Hereby, the compressibility of the fluid is neglected. The coupled eigensolution is then used for a model reduction strategy allowing fast frequency sweep calculations. The efficiency of the proposed formulations is investigated with respect to memory consumption, accuracy, and computation time. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:eigenvalue problem  FE‐BE coupling  ship‐like structure  model reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号