首页 | 本学科首页   官方微博 | 高级检索  
     


Direct numerical simulation of saturated deformable porous media using parallel hybrid Lattice–Boltzmann and finite element method
Authors:Irfan Khan  Cyrus K. Aidun
Affiliation:G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 500, 10th Street, Atlanta, GA 30318, U.S.A.
Abstract:Numerical techniques for modeling saturated deformable porous media have mainly been based on mixture theory or homogenization techniques. However, these techniques rely on phenomenological relationships for the constitutive equations along with assumptions of homogeneous and isotopic material properties to obtain closure. Direct numerical simulations of the multiphasic problem for flow in deformable porous media avoid such assumptions and thus can provide significantly accurate understanding of the physics involved. They serve as a tool to investigate the constitutive relationships in complex geometries. They also allow the validation of the existing mixture theory models and determine their limitations. In this work, a parallel hybrid method using Lattice Boltzmann Method (LBM) for fluid phase and Finite Element Method (FEM) for solid phase is used for direct numerical simulation of saturated deformable porous media. The method provides a number of unique features including scalability on distributed computing necessary for such a problem. The method has been validated for modeling fluid–structure interactions in complex geometries against a number of experimental and analytical solutions. Further some challenging problems has been chosen to show the capability of the method. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:saturated deformable porous media  direct simulation  Lattice–  Boltzmann method  finite element method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号