首页 | 本学科首页   官方微博 | 高级检索  
     


A call to arms for task parallelism in multi‐scale materials modeling
Authors:Nathan R. Barton  Joel V. Bernier  Jaroslaw Knap  Anne J. Sunwoo  Ellen K. Cerreta  Todd J. Turner
Affiliation:1. Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.;2. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, U.S.A.;3. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.;4. U.S. Air Force Research Laboratory, Wright Patterson AFB, OH 45433, U.S.A.
Abstract:Simulations based on multi‐scale material models enabled by adaptive sampling have demonstrated speedup factors exceeding an order of magnitude. The use of these methods in parallel computing is hampered by dynamic load imbalance, with load imbalance measurably reducing the achieved speedup. Here we discuss these issues in the context of task parallelism, showing results achieved to date and discussing possibilities for further improvement. In some cases, the task parallelism methods employed to date are able to restore much of the potential wall‐clock speedup. The specific application highlighted here focuses on the connection between microstructure and material performance using a polycrystal plasticity‐based multi‐scale method. However, the parallel load balancing issues are germane to a broad class of multi‐scale problems. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:solids  materials science  multiscale  plasticity  parallelization  finite element methods
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号