首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机森林算法的水华预警模型
作者姓名:刘云翔  吴浩
作者单位:上海应用技术大学计算机科学与信息工程学院
摘    要:针对湖泊水华预警模型中的数据具有噪声较复杂和非线性的特点,而传统预警方法难以解决稳健性差和过度拟合等问题,采用机器学习分类算法——随机森林,根据叶绿素a的浓度判断水华是否发生,选取水温(T)、p H值、氮磷比(TN∶TP)、化学需氧量(COD)、总氮(TN)、总磷(TP)作为影响因子,构建基于随机森林分类算法的稳健性较好、泛化性能强、实用性强的水华预警模型。选取太湖西半湖作为研究区域进行实例分析,结果表明:该模型预测精度达到91.67%,泛化误差小,能够有效进行短期预测;在水华发生的各个影响因子中,总磷和总氮是相对重要的影响因子。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号