首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of elevated water temperatures on interfacial delaminations,failure modes and shear strength in externally-bonded CFRP-concrete beams using infrared thermography,gray-scale images and direct shear test
Authors:W.L. Lai  S.C. Kou  C.S. Poon  W.F. Tsang  C.C. Lai
Affiliation:1. Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong;2. Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong
Abstract:This paper reports the results of a durability study of the effects of exposing externally-bonded CFRP-concrete beams to three elevated water temperatures (25 °C, 40 °C and 60 °C). The effects of the heated water environments on the adhesive bonding layer between the CFRP and concrete beams were evaluated by quantifying: (1) the changes of delaminations within the adhesive bonding layer, (2) the changes in resistance to direct shear force and (3) the changes of failure mode distribution. Before the exposure, the condition of the adhesive bonding layer was inspected by infrared thermography (IRT). After exposure, the deterioration of the same bonding layer and failure mode distributions were measured by analyzing the visual photos on the failed CFRP strips. The failure modes were found to be affected largely by the combined effect of elevated temperature and moisture ingress, in which three types were identified: failure at concrete beams, at adhesive bonding layer and interface between CFRP strip and concrete. With these methods, results of 54 specimens show that the adhesive bonding layers of all the specimens had gradually deteriorated in the 40 °C and 60 °C water baths. This deterioration was due to the weakening of the adhesive bonding layers when the glass transition temperature (Tg) or the heat distortion temperature (HDT) was approached or even exceeded, and gradual development of delaminations at adhesive bonding layer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号