首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time
Authors:Satendra Kumar  TSN Sankara Narayanan  S Ganesh Sundara Raman  SK Seshadri
Affiliation:1. National Metallurgical Laboratory, Madras Centre, CSIR Complex, Taramani, Chennai-600 113, India;2. Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras, Chennai-600 036, India
Abstract:Commercially pure titanium (CP-Ti) samples were subjected to thermal oxidation (TO) treatment at 650 °C for 8, 16, 24 and 48 h. The morphological features, structural characteristics, microhardness and corrosion resistance in Ringer's solution of thermally oxidized samples were compared with that of the untreated one, to ascertain the suitability of thermally oxidized sample as a bio-implant. The thickness, morphological features and phase constituents of the oxide film formed during thermal oxidation (TO) exhibit a strong dependence on the treatment time. Samples oxidized for 48 h lead to the formation of oxide grains along with a thick oxide film consisting of rutile and TiO phase. Samples oxidized for 24 h lead to the formation of oxide grains with thinner oxide layer at the grain boundary. Almost a 3 fold increase in hardness is observed for samples oxidized for 48 h compared to that of the untreated sample. Based on the corrosion protective ability, the untreated and thermally oxidized samples can be ranked as follows: {TO 48 h} > {TO 16 h} > {TO 8 h}  {TO 24 h} > untreated. From corrosion protection point of view, TO for 48 h is a promising surface treatment and it can be a suitable alternative to the untreated CP-Ti as a bio-implant.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号