首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory
Authors:Hans Fuchs  Paul Magdon
Affiliation:a Chair of Forest Inventory and Remote Sensing, Burckhardt Institute, Georg-August-Universität Göttingen, Büsgenweg 5, 37077 Göttingen, Germany
b Soil Science of Temperate and Boreal Ecosystems, Büsgen Institute, Georg-August-Universität Göttingen, Büsgenweg 5, 37077 Göttingen, Germany
Abstract:This study was part of an interdisciplinary research project on soil carbon and phytomass dynamics of boreal and arctic permafrost landscapes. The 45 ha study area was a catchment located in the forest tundra in northern Siberia, approximately 100 km north of the Arctic Circle.The objective of this study was to estimate aboveground carbon (AGC) and assess and model its spatial variability. We combined multi-spectral high resolution remote sensing imagery and sample based field inventory data by means of the k-nearest neighbor (k-NN) technique and linear regression.Field data was collected by stratified systematic sampling in August 2006 with a total sample size of n = 31 circular nested sample plots of 154 m2 for trees and shrubs and 1 m2 for ground vegetation. Destructive biomass samples were taken on a sub-sample for fresh weight and moisture content. Species-specific allometric biomass models were constructed to predict dry biomass from diameter at breast height (dbh) for trees and from elliptic projection areas for shrubs.Quickbird data (standard imagery product), acquired shortly before the field campaign and archived ASTER data (Level-1B product) of 2001 were geo-referenced, converted to calibrated radiances at sensor and used as carrier data. Spectral information of the pixels which were located in the inventory plots were extracted and analyzed as reference set. Stepwise multiple linear regression was applied to identify suitable predictors from the set of variables of the original satellite bands, vegetation indices and texture metrics. To produce thematic carbon maps, carbon values were predicted for all pixels of the investigated satellite scenes. For this prediction, we compared the kNN distance-weighted classifier and multiple linear regression with respect to their predictions.The estimated mean value of aboveground carbon from stratified sampling in the field is 15.3 t/ha (standard error SE = 1.50 t/ha, SE% = 9.8%). Zonal prediction from the k-NN method for the Quickbird image as carrier is 14.7 t/ha with a root mean square error RMSE = 6.42 t/ha, RMSEr = 44%) resulting from leave-one-out cross-validation. The k-NN-approach allows mapping and analysis of the spatial variability of AGC. The results show high spatial variability with AGC predictions ranging from 4.3 t/ha to 28.8 t/ha, reflecting the highly heterogeneous conditions in those permafrost-influenced landscapes. The means and totals of linear regression and k-NN predictions revealed only small differences but some regional distinctions were recognized in the maps.
Keywords:ASTER   Carbon estimation   Feature selection   Forest inventory   Forest tundra   Global change   k-NN regionalization   Multiple linear regression   Quickbird   Siberia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号