首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of foliage conditions and disturbance from multi-angular high spectral resolution remote sensing
Authors:Thomas Hilker  Nicholas C. Coops  Michael A. Wulder  Zoran Nesic
Affiliation:a Faculty of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
b Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
c Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
Abstract:Disturbance of forest ecosystems, an important component of the terrestrial carbon cycle, has become a focus of research over recent years, as global warming is about to increase the frequency and severity of natural disturbance events. Remote sensing offers unique opportunities for detection of forest disturbance at multiple scales; however, spatially and temporally continuous mapping of non-stand replacing disturbance remains challenging. First, most high spatial resolution satellite sensors have relatively broad spectral ranges with bandwidths unsuitable for detection of subtle, stress induced, features in canopy reflectance. Second, directional and background reflectance effects, induced by the interactions between the sun-sensor geometry and the observed canopy surface, make up-scaling of empirically derived relationships between changes in spectral reflectance and vegetation conditions difficult. Using an automated tower based spectroradiometer, we analyse the interactions between canopy level reflectance and different stages of disturbance occurring in a mountain pine beetle infested lodgepole pine stand in northern interior British Columbia, Canada, during the 2007 growing season. Directional reflectance effects were modelled using a bidirectional reflectance distribution function (BRDF) acquired from high frequency multi-angular spectral observations. Key wavebands for observing changes in directionally corrected canopy spectra were identified using discriminant analysis and highly significant correlations between canopy reflectance and field measured disturbance levels were found for several broad and narrow waveband vegetation indices (for instance, r2NDVI = 0.90; r2CHL3 = 0.85; p < 0.05). Results indicate that multi-angular observations are useful for extraction of disturbance related changes in canopy reflectance, in particular the temporally and spectrally dense data detected changes in chlorophyll content well. This study will help guide and inform future efforts to map forest health conditions at landscape and over increasingly coarse scales.
Keywords:Hyperspectral remote sensing   Multi-angular   Radiometer   AMSPEC   Disturbance   Mountain pine beetle   NDVI   Chlorophyl   Lodgepole pine   BRDF   BRF   Spectroradiometer   Canadian carbon program   Phenology   Forests
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号