首页 | 本学科首页   官方微博 | 高级检索  
     


Corrosion behavior of ceramic structural materials in an electrolytic reduction process
Authors:Soo-Haeng Cho  Jin-Mok Hur  Han-Soo Lee
Affiliation:Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute , Daejeon , 305-353 , Korea
Abstract:The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical alloying structural materials. Therefore, the choice of the optimum material for the processing equipment that handles molten salt is critical. We investigated the corrosion behaviors of CaO-stabilized ZrO2 (CSZ) and mullite (Al6Si2O13) at 650°C for 168 h in molten (1, 3) wt% Li2O–LiCl. The as-received and tested specimens were examined by scanning electron microscopy/X-ray energy dispersive spectrometry and X-ray diffraction. CSZ showed a much better hot-corrosion resistance in the presence of Li2O–LiCl molten salt than mullite. The surface corrosion layers of mullite consisted of LiAlSiO4 in 1 wt% Li2O–LiCl, and a LiAlO2 phase appeared as the Li2O concentration increased to 3 wt%. Furthermore, Li2SiO3 was the only corrosion product observed at 3 wt% Li2O–LiCl. The surface corrosion layers of CSZ were composed mainly of tetragonal-ZrO2 with partial monoclinic-ZrO2 in 1 wt% Li2O–LiCl, and a Li2ZrO3 phase appeared at 3 wt% Li2O–LiCl. There was no corrosion product detached from the surface for those specimens. CSZ was beneficial for increasing the hot-corrosion resistance of the structural materials that handle high-temperature molten salts containing Li2O.
Keywords:ceramic structural material  corrosion resistance  electrolytic reduction  pyroprocessing  molten salt
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号