首页 | 本学科首页   官方微博 | 高级检索  
     

EEG情感识别中基于集成深度学习模型的多分析域特征融合
引用本文:晁浩,刘永利,连卫芳. EEG情感识别中基于集成深度学习模型的多分析域特征融合[J]. 控制与决策, 2020, 35(7): 1674-1680
作者姓名:晁浩  刘永利  连卫芳
作者单位:河南理工大学计算机科学与技术学院,河南焦作454000;河南理工大学计算机科学与技术学院,河南焦作454000;河南理工大学计算机科学与技术学院,河南焦作454000
基金项目:国家自然科学基金项目(61502150);河南省高等学校重点科研计划项目(19A520004);河南省科技攻关项目(172102210279).
摘    要:提出一种基于集成深度学习模型的情感状态检测方法.首先从脑电信号的时域、频域和时频域中提取4种表征情绪状态显著信息的初始特征;然后使用胶质细胞链改进的深度信念网络分别提取这些特征的高层抽象表示;最后利用判别式受限玻尔兹曼机对高层抽象特征进行融合,进行情感状态预测.在DEAP数据集上进行的实验显示,胶质链能够挖掘和利用EEG不同通道之间的相关性信息,而集成深度学习模型能够有效集成EEG信号在时域、频域和时频域蕴含的情感状态相关的显著性信息.

关 键 词:情感识别  多通道脑电  深度学习  深度信念网络  特征融合  受限玻尔兹曼机

Multi-analysis domain feature fusion of EEG emotion recognition based on integrated deep learning model
CHAO Hao,LIU Yong-li,LIAN Wei-fang. Multi-analysis domain feature fusion of EEG emotion recognition based on integrated deep learning model[J]. Control and Decision, 2020, 35(7): 1674-1680
Authors:CHAO Hao  LIU Yong-li  LIAN Wei-fang
Affiliation:School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo454000,China
Abstract:An emotion recognition method based on the integrated deep learning model is presented. Firstly, four kinds of raw features are extracted from the time domain, frequency domain and time-frequency domain of electroence- phalogram(EEG) signals. Then, the high-level representations of these features are extracted respectively by using deep belief networks with glia chains. Finally, the high-level representations are fused by a discriminative restricted Boltzmann machine to implement emotion recognition task. Experiments are conducted on the DEAP dataset. The results show glia chains can mine inter-channel correlation information and the complementary models can integrate the four kinds of raw features effectively.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号