首页 | 本学科首页   官方微博 | 高级检索  
     

基于二代curvelet与wavelet变换的自适应图像融合
引用本文:周爱平,梁久祯. 基于二代curvelet与wavelet变换的自适应图像融合[J]. 激光与红外, 2010, 40(9): 1010-1016
作者姓名:周爱平  梁久祯
作者单位:江南大学信息工程学院,江苏,无锡,214122
基金项目:江苏省自然科学基金项目(No.BK20080544)资助
摘    要:针对同一场景红外图像与可见光图像的融合问题,提出了一种基于二代curvelet与wavelet变换的自适应图像融合算法。首先对源图像进行快速离散curvelet变换,得到不同尺度与方向下的粗尺度系数和细尺度系数;根据红外图像与可见光图像的不同物理特性以及人类视觉系统特性,对不同尺度与方向下的粗尺度系数和细尺度系数采用基于离散小波变换的图像融合方法,在小波域中,对低频系数采用基于红外图像与可见光图像的不同物理特性的自适应融合规则,对高频系数采用基于邻域方向对比度与局部区域匹配度相结合的自适应融合规则,然后进行小波逆变换得到融合的curvelet系数;最后,进行快速离散curvelet逆变换得到融合图像。实验结果表明,该方法能够更加有效、准确地提取图像中的特征,是一种有效可行的图像融合算法。

关 键 词:图像融合;curvelet变换;wavelet变换;物理特性;方向对比度

Adaptive image fusion based on the second generation curvelet and wavelet transform
ZHOU Ai-ping,LIANG Jiu-zhen. Adaptive image fusion based on the second generation curvelet and wavelet transform[J]. Laser & Infrared, 2010, 40(9): 1010-1016
Authors:ZHOU Ai-ping  LIANG Jiu-zhen
Affiliation:College of Information Engineering,Jiangnan University,Wuxi 214122,China
Abstract:For the fusion problem of infrared and visible light images with the same scene,an adaptive image fusion algorithm based on the second generation curvelet and wavelet transform is proposed.Firstly,source images are decomposed by the fast discrete curvelet transform,thus the coarse scale and fine scale coefficients are obtained at different scales and in various directions.Secondly,according to the different physical features of infrared and visible light images and human visual system features,the coarse scale and fine scale coefficients are fused using image fusion method based on discrete wavelet transform.In wavelet domain,for the low frequency coefficients,we present an adaptive fusion rule based on the physical features of infrared and visible light images;while for the high frequency coefficients,we present an adaptive fusion rule based on the neighborhood directional contrast combined with the local area matching.Fused curvelet coefficients are obtained through the inverse wavelet transform.Finally,the fusion image is obtained through the inverse fast discrete curvelet transform.The experimental results illustrate that the proposed algorithm is effective for extracting the characteristics of the original images.
Keywords:image fusion  curvelet transform  wavelet transform  physical feature  directional contrast
本文献已被 万方数据 等数据库收录!
点击此处可从《激光与红外》浏览原始摘要信息
点击此处可从《激光与红外》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号