首页 | 本学科首页   官方微博 | 高级检索  
     


Clay particles destabilize engineered nanoparticles in aqueous environments
Authors:Zhou Dongxu  Abdel-Fattah Amr I  Keller Arturo A
Affiliation:Bren School of Environmental Science and Management, University of California, 3420 Bren Hall, Bren School, Santa Barbara, California 93106-5131, United States.
Abstract:Given the ubiquity of natural clay minerals, the most likely interaction of nanoparticles released into an aquatic environment will be with suspended clay minerals. Thus, the transport of engineered nanoparticles in the subsurface and the water column will most likely be altered by their interaction with these minerals. We studied the interactions of two of the most produced nanoparticles, Ag and TiO(2), and montmorillonite to determine how heteroaggregation can alter the stability of nanoparticle/clay mineral mixtures. Since at low pH montmorillonite has a negatively charged basal plane and positively charged edges, its interaction with these nanoparticles at different pH lead to unusual behaviors. There are six different interactions for each clay-nanoparticle pair. At pH values below the IEP of montmorillonite edge site, montmorillonite reduced the stability of both negatively charged Ag and positively charged TiO(2) nanoparticles. Surprisingly this enhanced coagulation only occurs within an intermediate ionic strength range. The spillover of the montmorillonite basal plane electric double layer to the montmorillonite edge may screen the electrostatic attraction between Ag and the montmorillonite edge at low ionic strength, whereas a repulsion between TiO(2) and montmorillonite face sites may restabilize the mixture.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号