首页 | 本学科首页   官方微博 | 高级检索  
     


A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine
Abstract:This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Keywords:nonlinear classification  support vector machine  kernel composition  multiple local linear classifiers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号