首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的无锚框目标检测算法综述
引用本文:高海涛,朱超涵,张天棋,郝飞,茅新宇. 基于深度学习的无锚框目标检测算法综述[J]. 机床与液压, 2024, 52(1): 202-209
作者姓名:高海涛  朱超涵  张天棋  郝飞  茅新宇
作者单位:南京工程学院机械工程学院
基金项目:国家自然科学基金青年科学基金项目(51705238);江苏省研究生实践创新计划项目〖BF〗(SJCX_0916〖BFQ〗;〖BF〗SJCX23_1173)〖BFQ〗;江苏省现代农机装备与技术示范推广项目(NJ2021-58)
摘    要:近年来,基于深度学习的无锚框目标检测算法备受关注。为了深入理解无锚框检测算法,对比分析了基于深度学习的无锚框检测算法的原理机制、网络结构、核心特性以及优缺点,归纳总结了无锚框检测算法的核心技术,并在同一数据集上通过性能实验研究上述算法的性能,总结提出基于深度学习的目标检测算法未来的研究方向。

关 键 词:无锚框目标检测算法;深度学习;算法比较

Overview of Anchor-Free Object Detection Algorithms Based on Depth Learning
GAO Haitao,ZHU Chaohan,ZHANG Tianqi,HAO Fei,MAO Xinyu. Overview of Anchor-Free Object Detection Algorithms Based on Depth Learning[J]. Machine Tool & Hydraulics, 2024, 52(1): 202-209
Authors:GAO Haitao  ZHU Chaohan  ZHANG Tianqi  HAO Fei  MAO Xinyu
Abstract:In recent years,target detection algorithm based on deep learning has attracted much attention.In order to deeply understand the typical anchor-free object detection algorithms,the principle mechanism,network structure,core characteristics,advantages and disadvantages of seven anchor-free object detection algorithms based on deep learning were compared and analyzed.The performance of the above algorithms was experimentally studied.On this basis,the main characteristics of the anchor-free object detection algorithm were summarized,and the research direction of the anchor-free object detection algorithm was pointed out.
Keywords:anchor-free object detection algorithm  deep learning  algorithm comparison
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号