首页 | 本学科首页   官方微博 | 高级检索  
     

改进型ViBe算法在运动目标检测中的应用
引用本文:李鹏飞,吴志佳,姜宗林. 改进型ViBe算法在运动目标检测中的应用[J]. 红外, 2023, 44(6): 12-18
作者姓名:李鹏飞  吴志佳  姜宗林
作者单位:中国科学院长春光学精密机械与物理研究所,中国科学院长春光学精密机械与物理研究所,中国科学院长春光学精密机械与物理研究所
摘    要:作为计算机视觉领域的热门方向之一,运动目标检测具有很高的理论研究价值和很广的实际应用空间。传统视觉背景提取器(Visual Background Extractor, ViBe)目标检测算法实时性高且内存消耗低,但存在受光照影响大、不能有效抑制拖影区域、无法消除阴影以及检测图像内部空洞等问题。鉴于以上不足,提出3点针对性改进策略:(1)优化算法核心参数。筛选最优值来替换以往经验值,从而提高算法性能,增强算法适应性。(2)引入光强检测算子。阈值半径随光强变化自适应,避免因光照变化而出现拖影区域。(3)增加阴影检测模型。利用感兴趣区域(Region of Interest, ROI)像素分布确定阴影位置,结合运动目标自身特性分割出目标区与阴影区。仿真实验结果证明:改进型ViBe算法不仅能够完整地检测、抓取运动目标,而且还可以有效地抑制拖影区域并消除目标阴影。

关 键 词:运动目标检测;ViBe算法;动态噪声抑制;阴影消除
收稿时间:2023-01-13
修稿时间:2023-02-10

Application of Improved ViBe Algorithm in Moving Target Detection
lipengfei,Wu Zhijia and Jiang Zonglin. Application of Improved ViBe Algorithm in Moving Target Detection[J]. Infrared, 2023, 44(6): 12-18
Authors:lipengfei  Wu Zhijia  Jiang Zonglin
Affiliation:Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences,Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences,Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences
Abstract:As one of the popular directions in the field of computer vision, moving target detection has high theoretical research value and wide practical application space. Traditional visual background extractor (ViBe) target detection algorithm has high real-time performance and low memory consumption. However, this algorithm has many problems, such as obvious illumination change, inability to effectively suppress ghost area, inability to eliminate shadows, and inability to detect holes in the image. In view of the above deficiencies, three targeted improvement strategies are proposed: (1) Optimize the core parameters of the algorithm. Filter the optimal value to replace the previous experience value, so as to improve the performance and adaptability of the algorithm. (2) Introduce the light intensity detection operator. The image brightness is numerical and the threshold radius is adaptive to avoid ghost area due to light changes. (3) Add shadow detection model. The pixel distribution in the region of interest (ROI) determines the shadow position, and the target area and shadow area are separated according to the characteristics of the moving target. Simulation results show that the improved ViBe algorithm can not only detect and capture moving targets completely, but also effectively suppress ghost areas and eliminate target shadows.
Keywords:moving target detection   ViBe algorithm   dynamic noise suppression   shadow elimination
点击此处可从《红外》浏览原始摘要信息
点击此处可从《红外》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号