首页 | 本学科首页   官方微博 | 高级检索  
     


Real-time hand tracking based on YOLOv4 model and Kalman filter
Authors:Du Xuwei  Chen Dong  Liu Huajiang  Ma Zhaokun  Yang Qianqian
Abstract:Aiming at the shortcomings of current gesture tracking methods in accuracy and speed, based on deep learning You Only Look Once version 4 (YOLOv4) model, a new YOLOv4 model combined with Kalman filter rea-time hand tracking method was proposed. The new algorithm can address some problems existing in hand tracking technology such as detection speed, accuracy and stability. The convolutional neural network (CNN) model YOLOv4 is used to detect the target of current frame tracking and Kalman filter is applied to predict the next position and bounding box size of the target according to its current position. The detected target is tracked by comparing the estimated result with the detected target in the next frame and, finally, the real-time hand movement track is displayed. The experimental results validate the proposed algorithm with the overall success rate of 99.43%
Keywords:
点击此处可从《中国邮电高校学报(英文版)》浏览原始摘要信息
点击此处可从《中国邮电高校学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号