首页 | 本学科首页   官方微博 | 高级检索  
     

基于似然函数的双曲调频信号参数估计快速算法
引用本文:马碧云, 元达鹏, 刘娇蛟. 基于似然函数的双曲调频信号参数估计快速算法[J]. 电子与信息学报, 2021, 43(5): 1228-1234. doi: 10.11999/JEIT200044
作者姓名:马碧云  元达鹏  刘娇蛟
作者单位:1.华南理工大学电子与信息学院 广州 510640;;2.自然资源部海洋环境探测技术与应用重点实验室 广州 510300
基金项目:广东省自然资源厅广东省海洋经济发展专项基金(粤自然资合[2020]009号),国家自然科学基金(61302056,61401158),华南理工大学中央高校基本科研业务费专项资金(2017MS047)
摘    要:相较于线性调频(LFM)信号,双曲调频(HFM)信号因具有良好的脉冲压缩性能和多普勒不变性,被广泛用于雷达侦查、水声探测等多普勒影响严重的场景中,其中HFM信号的参数估计问题尤为重要。有鉴于此,该文提出一种基于似然函数的HFM信号参数估计快速算法。文中首先推导出HFM信号的Cramer-Rao下界作为参数估计的性能评估...

关 键 词:信号处理  双曲调频  参数估计  似然函数
收稿时间:2020-01-13
修稿时间:2020-08-01

Fast Algorithm for Parameter Estimation of Hyperbolic Frequency Modulation Signals Based on Likelihood Function
Biyun MA, Dapeng YUAN, Jiaojiao LIU. Fast Algorithm for Parameter Estimation of Hyperbolic Frequency Modulation Signals Based on Likelihood Function[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1228-1234. doi: 10.11999/JEIT200044
Authors:Biyun MA  Dapeng YUAN  Jiaojiao LIU
Affiliation:1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China;;2. Key Laboratory of Marine Environment Survey Technology and Application, Ministry of Natural Resource, Guangzhou 510300, China
Abstract:Compared with Linear Frequency Modulation (LFM) signals, Hyperbolic Frequency Modulation (HFM) signals, which have good performance of the pulse compression and the Doppler invariance, are widely used in scenes with severe Doppler effects such as radar detection and underwater acoustic detection, and among them, the parameter estimation problem of HFM signals is particularly important. In view of this, this paper proposes a Fast Algorithm for Parameter Estimation of Hyperbolic Frequency Modulation Signals Based on Likelihood Function. Firstly, the Cramer-Rao lower bound of the HFM signal is derived as the performance evaluation standard for parameter estimation; Then based on the Gaussian random noise, the likelihood function of the HFM signal is constructed, and an improved fitness function is proposed in combination with the characteristics of data vectorization, then the Global best guided Artificial Bee Colony (GABC) algorithm is used to optimize the fitness function to realize the parameter estimation of the HFM signal. Finally, Monte Carlo simulation results show that, compared to the method before the improvement, the mean square error of the parameter estimation result of the HFM signal is closer to the Cramer-Rao lower bound when the signal-to-noise ratio is more the 3 dB, and the amount of calculation is about one-third of the method before improvement, which improves the algorithm convergence speed while ensuring the estimation accuracy.
Keywords:Signal processing  Hyperbolic Frequency Modulation(HFM)  Parameter estimation  Likelihood function
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号