首页 | 本学科首页   官方微博 | 高级检索  
     

基于串联式一维神经网络的毫米波雷达动态手势识别方法
引用本文:靳标, 彭宇, 邝晓飞, 张贞凯. 基于串联式一维神经网络的毫米波雷达动态手势识别方法[J]. 电子与信息学报, 2021, 43(9): 2743-2750. doi: 10.11999/JEIT200894
作者姓名:靳标  彭宇  邝晓飞  张贞凯
作者单位:江苏科技大学电子信息学院 镇江 212003
基金项目:国家自然科学基金(61701416, 61871203)
摘    要:现有的基于雷达传感器的手势识别方法,大多先利用雷达回波对手势的距离、多普勒和角度等信息进行参数估计,得到各种数据谱图,然后再利用卷积神经网络对这些谱图进行分类,实现过程较为复杂.该文提出一种基于串联式1维神经网络(1D-ScNN)的毫米波雷达动态手势识别方法.首先基于毫米波雷达获取动态手势的原始回波,然后利用1维卷积和...

关 键 词:雷达目标识别  手势识别  卷积神经网络  毫米波雷达
收稿时间:2020-10-19
修稿时间:2021-01-30

Dynamic Gesture Recognition Method Based on Millimeter-wave Radar by One-Dimensional Series Neural Network
Biao JIN, Yu PENG, Xiaofei KUANG, Zhenkai ZHANG. Dynamic Gesture Recognition Method Based on Millimeter-wave Radar by One-Dimensional Series Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2743-2750. doi: 10.11999/JEIT200894
Authors:Biao JIN  Yu PENG  Xiaofei KUANG  Zhenkai ZHANG
Affiliation:College of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract:For the most of the existing gesture recognition methods based on the radar sensor, the parameters such as the distance, Doppler, and angle are estimated using the radar echo at first. And then the obtained data spectra are inputted into the convolutional neural networks to classify the gestures. The implementation process is complicated. A dynamic gesture recognition method is proposed based on the millimeter-wave radar using the One-Dimensional Series connection Neural Networks (1D-ScNN) in this paper. Firstly, the original echo of dynamic gesture is obtained by the millimeter-wave radar. The gesture features are extracted by the one-dimensional convolution and pooling operations, and then are inputted into the one-dimensional inception v3 structure. In order to aggregate the one-dimensional features, the Long Short-Term Memory (LSTM) modular is connected to the end of the network. The inter-frame correlation of dynamic gestures echo is fully utilized to improve the recognition accuracy and the convergence speed of training. The experimental results show that the proposed method is simple in implementation and has a fast convergence speed. The classification accuracy can reach more than 96.0%, which is higher than the traditional gesture classification methods.
Keywords:Radar target recognition  Gesture recognition  Convolutional Neural Networks(CNN)  Millimeter-wave radar
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号