首页 | 本学科首页   官方微博 | 高级检索  
     


In Situ Encapsulating α‐MnS into N,S‐Codoped Nanotube‐Like Carbon as Advanced Anode Material: α → β Phase Transition Promoted Cycling Stability and Superior Li/Na‐Storage Performance in Half/Full Cells
Authors:Dai‐Huo Liu  Wen‐Hao Li  Yan‐Ping Zheng  Zheng Cui  Xin Yan  Dao‐Sheng Liu  Jiawei Wang  Yu Zhang  Hong‐Yan Lü  Feng‐Yang Bai  Jin‐Zhi Guo  Xing‐Long Wu
Affiliation:1. National & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, P. R. China;2. Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin, P. R. China;3. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China;4. School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
Abstract:Incorporation of N,S‐codoped nanotube‐like carbon (N,S‐NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α‐MnS nanoparticles (NPs) are in situ encapsulated into N,S‐NTC, preparing an advanced anode material (α‐MnS@N,S‐NTC) for lithium‐ion/sodium‐ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li‐storage properties, which is deduced by the studies of ex situ X‐ray diffraction/high‐resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α‐MnS@N,S‐NTC electrode delivers a high Li‐storage capacity (1415 mA h g?1 at 50 mA g?1), excellent rate capability (430 mA h g?1 at 10 A g?1), and long‐term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g?1) with retained morphology. In addition, the N,S‐NTC‐based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α‐MnS@N,S‐NTC also delivers high Na‐storage capacity (536 mA h g?1 at 50 mA g?1) without the occurrence of such α → β phase transition and excellent full‐cell performances as coupling with commercial LiFePO4 and LiNi0.6Co0.2Mn0.2O2 cathodes in LIBs as well as Na3V2(PO4)2O2F cathode in SIBs.
Keywords:α  ‐MnS  β  ‐MnS  Li/Na storage  N  S‐codoped carbon  phase transition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号