首页 | 本学科首页   官方微博 | 高级检索  
     


Orientation‐Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil
Authors:Bao‐Wen Li  Da Luo  Liyan Zhu  Xu Zhang  Sunghwan Jin  Ming Huang  Feng Ding  Rodney S Ruoff
Affiliation:1. Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, Republic of Korea;2. School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea;3. Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Abstract:Epitaxial graphene grown on single crystal Cu(111) foils by chemical vapor deposition is found to be free of wrinkles and under biaxial compressive strain. The compressive strain in the epitaxial regions (0.25–0.40%) is higher than regions where the graphene is not epitaxial with the underlying surface (0.20–0.25%). This orientation‐dependent strain relaxation is through the loss of local adhesion and the generation of graphene wrinkles. Density functional theory calculations suggest a large frictional force between the epitaxial graphene and the Cu(111) substrate, and this is therefore an energy barrier to the formation of wrinkles in the graphene. Enhanced chemical reactivity is found in epitaxial graphene on Cu(111) foils as compared to graphene on polycrystalline Cu foils for certain chemical reactions. A higher compressive strain possibly favors lowering the formation energy and/or the energy gap between the initial and transition states, either of which can lead to an increase in chemical reactivity.
Keywords:chemical functionalization  Cu(111)  wrinkle‐free graphene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号