首页 | 本学科首页   官方微博 | 高级检索  
     


Origin of Fracture‐Resistance to Large Volume Change in Cu‐Substituted Co3O4 Electrodes
Authors:Heguang Liu  Qianqian Li  Zhenpeng Yao  Lei Li  Yuan Li  Chris Wolverton  Mark C Hersam  Jinsong Wu  Vinayak P Dravid
Affiliation:1. Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA;2. School of Material Science and Engineering, Xi'an University of Technology, Xi'an, China;3. NUANCE Center, Northwestern University, Evanston, IL, USA;4. Department of Chemistry and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA
Abstract:The electrode materials conducive to conversion reactions undergo large volume change in cycles which restrict their further development. It has been demonstrated that incorporation of a third element into metal oxides can improve the cycling stability while the mechanism remains unknown. Here, an in situ and ex situ electron microscopy investigation of structural evolutions of Cu‐substituted Co3O4 supplemented by first‐principles calculations is reported to reveal the mechanism. An interconnected framework of ultrathin metallic copper formed provides a high conductivity backbone and cohesive support to accommodate the volume change and has a cube‐on‐cube orientation relationship with Li2O. In charge, a portion of Cu metal is oxidized to CuO, which maintains a cube‐on‐cube orientation relationship with Cu. The Co metal and oxides remain as nanoclusters (less than 5 nm) thus active in subsequent cycles. This adaptive architecture accommodates the formation of Li2O in the discharge cycle and underpins the catalytic activity of Li2O decomposition in the charge cycle.
Keywords:Cu‐doping transition metal oxides  cycling stability  in situ transmission electron microscopy (TEM)  lithium‐ion batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号