首页 | 本学科首页   官方微博 | 高级检索  
     


A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co‐Doped Graphitic Nanotubes as High‐Performance Lithium‐Ion Battery Anodes
Authors:Hassina Tabassum  Ruqiang Zou  Asif Mahmood  Zibin Liang  Qingfei Wang  Hao Zhang  Song Gao  Chong Qu  Wenhan Guo  Shaojun Guo
Affiliation:Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
Abstract:Yolk–shell nanostructures have received great attention for boosting the performance of lithium‐ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li+ ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co‐doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni2O3, Mn3O4) through combining pyrolysis with an oxidation method is reported herein. The as‐made TMO@BNG exhibits the TMO‐dependent lithium‐ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium‐ion storage capacity of 1554 mA h g?1 at the current density of 96 mA g?1, good rate ability (410 mA h g?1 at 1.75 A g?1), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.
Keywords:graphitic nanotubes  hollow structures  lithium‐ion batteries  transition metals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号