首页 | 本学科首页   官方微博 | 高级检索  
     


Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration
Authors:Jie Cao  Shu Xia Tao  Peter A Bobbert  Ching‐Ping Wong  Ni Zhao
Affiliation:1. Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong;2. Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands;3. Molecular Materials and Nanosystems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
Abstract:Recent success in achieving highly stable Rb‐containing organolead halide perovskites has indicated the possibility of incorporating small monovalent cations, which cannot fit in the lead‐halide cage with an appropriate tolerance factor, into the perovskite lattice while maintaining a pure stable “black” phase. In this study, through a combined experimental and theoretical investigation by density functional theory (DFT) calculations on the incorporation of extrinsic alkali cations (Rb+, K+, Na+, and Li+) in perovskite materials, the size‐dependent interstitial occupancy of these cations in the perovskite lattice is unambiguously revealed. Interestingly, DFT calculations predict the increased ion migration barriers in the lattice after the interstitial occupancy. To verify this prediction, ion migration behavior is characterized through hysteresis analysis of solar cells, electrical poling, temperature‐dependent conductivity, and time‐dependent photoluminescence measurements. The results collectively point to the suppression of ion migration after lattice interstitial occupancy by extrinsic alkali cations. The findings of this study provide new material design principles to manipulate the structural and ionic properties of multication perovskite materials.
Keywords:density functional theory  interstitial occupancy  ion migration  multication perovskites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号