首页 | 本学科首页   官方微博 | 高级检索  
     

非线性力矩作用下气动偏心弹丸强迫圆锥运动稳定性条件
引用本文:舒敬荣,李红星,李宏玲. 非线性力矩作用下气动偏心弹丸强迫圆锥运动稳定性条件[J]. 兵工学报, 2018, 39(5): 875-882. DOI: 10.3969/j.issn.1000-1093.2018.05.006
作者姓名:舒敬荣  李红星  李宏玲
作者单位:安徽新华学院电子通信工程学院,安徽合肥,230031;安徽新华学院电子通信工程学院,安徽合肥,230031;安徽新华学院电子通信工程学院,安徽合肥,230031
基金项目:国家自然科学基金项目(11272356),中国博士后科学基金项目(2012M521842)
摘    要:为了指导无伞末敏弹等气动非对称弹丸的结构设计和气动设计,建立了气动偏心弹丸在三次方非线性静力矩和二次方非线性赤道阻尼力矩作用下的攻角方程,运用平均法求解了方程的近似解析解及其线性变分方程。在此基础上,根据Hurwitz判别准则,得到了气动偏心弹丸做强迫圆锥运动的渐近稳定条件,分析了该条件的物理意义,并应用数值计算算例对该条件进行了验证。结果表明,当自转角速度和气动偏心角满足一定的约束条件时,三次方非线性静力矩和二次方非线性赤道阻尼力矩作用下的弹丸可以实现固定攻角的稳定强迫圆锥运动。

关 键 词:无伞末敏弹  气动偏心  非线性空气动力  圆锥运动  运动稳定性
收稿时间:2017-08-27

Forced Conical Motion Stability Conditions for Pneumatic Eccentric Projectile under the Action of Nonlinear Moment
SHU Jing-rong,LI Hong-xing,LI Hong-ling. Forced Conical Motion Stability Conditions for Pneumatic Eccentric Projectile under the Action of Nonlinear Moment[J]. Acta Armamentarii, 2018, 39(5): 875-882. DOI: 10.3969/j.issn.1000-1093.2018.05.006
Authors:SHU Jing-rong  LI Hong-xing  LI Hong-ling
Affiliation:(College of Electronic and Communication Engineering, Anhui Xinhua University, Hefei 230031, Anhui, China)
Abstract:An angle of attack equation of pneumatic eccentric projectile under the action of cubic nonlinear static moment and quadratic nonlinear equatorial damping moment is established for the structure design and aerodynamic design of pneumatic asymmetric projectiles,such as non-parachute terminal sensitive projectile,and the approximate analytical solution of the equation and linear variational equation are solved by using average method.On this basis,the asymptotic stability conditions of forced conical motion for pneumatic eccentric projectile is obtained according to Hurwitz criterion,and the physical meaning of the conditions is analyzed.The numerical calculation example is used to verify the conditions.Result shows that the projectile under the action of cubic nonlinear static moment and quadratic nonlinear equatorial damping moment can achieve steady forced conical motion at fixed angle of attack when spin velocity and pneumatic eccentric angle satisfy certain constraint conditions.
Keywords:non-parachure terminal sensitive   projectile   pneumatic eccentricity   nonlinear aerodynamics   conical motion   kinetic stability  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号