摘 要: | 针对传统障碍物检测中的立体匹配算法存在特征提取不充分,在复杂场景和光照变化明显等区域存在误匹配率较高,算法所获视差图精度较低等问题,提出了一种基于多尺度卷积神经网络的立体匹配方法。首先,在匹配代价计算阶段,建立了一种基于多尺度卷积神经网络模型,采用多尺度卷积神经网络捕获图像的多尺度特征。为增强模型的抗干扰和快速收敛能力,在原有损失函数中提出改进,使新的损失函数在训练时可以由一正一负两个样本同时进行训练,缩短了模型训练时间。其次,在代价聚合阶段,构造一个全局能量函数,将二维图像上的最优问题分解为四个方向上的一维问题,利用动态规划的思想,得到最优视差。最后,通过左右一致性检测对所得视差进行进一步精化,得到最终视差图。在Middlebury数据集提供的标准立体匹配图像测试对上进行了对比实验,经过实验验证算法的平均误匹配率为4.94%,小于对比实验结果,并提高了在光照变化明显以及复杂区域的匹配精度,得到了高精度视差图。
|