首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进多目标粒子群算法的冷连轧规程优化设计
引用本文:魏立新,王利平,马明明,车海军,杨景明. 基于改进多目标粒子群算法的冷连轧规程优化设计[J]. 中国机械工程, 2015, 26(9): 1239
作者姓名:魏立新  王利平  马明明  车海军  杨景明
作者单位:燕山大学工业计算机控制工程河北省重点实验室,秦皇岛,066004
基金项目:国家自然科学基金委员会与宝钢集团有限公司联合资助项目(U1260203);国家自然科学基金资助项目(61074099);河北省高等学校创新团队领军人才培育计划资助项目(LJRC013)
摘    要:合理的轧制规程能够提高轧机的产量和产品的质量,带来显著的经济效益。采用多目标粒子群算法,选择等相对负荷和预防打滑为目标进行冷连轧规程优化。针对算法存在的收敛性和分布性难以均衡的问题,引入一种基于平行坐标系的密度和收敛潜能计算方法;同时,为克服算法易于陷入局部最优的缺陷,提出一种带个体扰动的全局最优领导粒子选择策略。仿真结果表明,该方法能快速跳出局部极值,获得具有更好收敛性和分布性的近似Pareto前沿。最后应用该方法对某五机架冷连轧机进行了轧制规程优化。 

关 键 词:多目标粒子群  冷轧规程优化  局部极值  收敛性  分布性  

Optimization of Tandem Cold Rolling Schedule Based on Improved Multi-objective Particle Swarm Optimization Algorithm
Wei Lixin,Wang Liping,Ma Mingming,Che Haijun,Yang Jingming. Optimization of Tandem Cold Rolling Schedule Based on Improved Multi-objective Particle Swarm Optimization Algorithm[J]. China Mechanical Engineering, 2015, 26(9): 1239
Authors:Wei Lixin  Wang Liping  Ma Mingming  Che Haijun  Yang Jingming
Affiliation:Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao,Hebei,066004
Abstract:Reasonable rolling schedule could improve the quality of the mill's production and products thus bring significant economic benefits. The multi-objective particle swarm algorithm was adopted to optimize the objective functions of equal relative load and the slip rate. According to the problems that convergence and distribution were difficult to balance, based on parallel cell coordinate system a novel method was proposed to assess the evolutionary environment including density and potential of convergence. Meanwhile, to enhance the ability of escaping from local optima, a disturbance vector strategy was proposed for selecting global best. Simulation results show the improved strategy can be able to prevent falling into local extremum point, and improve the convergence and distribution of approximate Pareto front. The method was applied to a five-stand tandem cold mill rolling schedule optimization.
Keywords:multi-objective particle swarm  cold rolling schedule optimization  local extremum  convergence  distribution  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号