首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBFN-AFS的开关磁阻电机非线性模型与动态仿真
引用本文:丁文,梁得亮. 基于RBFN-AFS的开关磁阻电机非线性模型与动态仿真[J]. 电工技术学报, 2009, 24(9)
作者姓名:丁文  梁得亮
作者单位:西安交通大学电气工程学院电力设备电气绝缘国家重点实验室,西安,710049
基金项目:国家自然科学基金重点资助项目 
摘    要:针对开关磁阻电机(SRM)电磁特性存在饱和非线性、多变量、强耦合的特点,提出了一种基于径向基函数网络的自适应模糊系统(RBFN-AFS)建立SRM模型并进行动态仿真的新方法.该方法在实测SRM磁链和转矩特性的基础上,采用递阶自组织学习(HSOL)算法对RBFN-AFS网络进行学习训练,使网络从样本数据中估计出未知的模糊规则,并在学习训练过程中不断更新和修正网络隐层节点参数矢量和连接权值,最终实现磁链与转矩对转子位置角和相电流的非线性映射关系,与其他建模方法相比,该模型具有更快的计算速度和更好的泛化能力.将基于RBFN-AFS网络的电流-磁链和转矩模型应用于SRM调速系统的动态仿真分析中,通过仿真与实验比较,此方法能够很好地预测SRM的动态和稳态运行特性.这种基于RBFN-AFS的建模方法为实现SRM的各项性能分析和各种实时控制提供了一种新的思路.

关 键 词:开关磁阻电机  基于径向基函数的自适应模糊系统  递阶自组织学习算法  建模  动态仿真

Modeling and Simulation of Switched Reluctance Motor Based on RBFN-AFS
Ding Wen,Liang DeLiang. Modeling and Simulation of Switched Reluctance Motor Based on RBFN-AFS[J]. Transactions of China Electrotechnical Society, 2009, 24(9)
Authors:Ding Wen  Liang DeLiang
Abstract:Considering the nonlinear, saturation and coupled magnetization, this paper presents a radial basis function network-based adaptive fuzzy system (RBFN-AFS) to model the switched reluctance motor (SRM) and predict the performance in SRM drive system. Based on the measured SRM's flux linkage and torque data, the RBFN-AFS is designed to learn and train the electromagnetic characteristics knowledge for the SRM by using the hierarchically self-organizing learning (HSOL) algorithm to determine the minimum necessary number of rules and adjust the mean and variance vectors of individual hidden nodes as well as their weights. After training, the RBFN-AFS forms a very efficient mapping structure for the nonlinear characteristics of the SRM. Lastly, a RBFN-AFS current-dependent inverse flux linkage model and a RBFN-AFS torque model are used to simulate the dynamic performance of a 6/4 0.55kW SRM. The simulation results and experimental waveforms are reported to validate the proposed RBFN-AFS modeling method for SRM. It also provides the application of analysis and real time control for SRM.
Keywords:Switched reluctance motor  radial basis function network-based adaptive fuzzy system  hierarchically self organizing learning  modeling  dynamic simulation
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号