首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal
Authors:Pitoniak Erik  Wu Chang-Yu  Mazyck David W  Powers Kevin W  Sigmund Wolfgang
Affiliation:Department of Environmental Engineering Sciences, Particle Engineering Research Center, University of Florida, Gainesville, Florida 32611-6450, USA.
Abstract:A novel nanocomposite that combines high-surface area silica with the photocatalytic properties of titania has been developed that allows for effective capture of elemental mercury vapor. The adsorption capability of the developed material has been found to improve after periods of photocatalytic oxidation. In this study, the mechanisms for adsorption enhancement were identified. BET nitrogen adsorption and mercury porosimetry were used to evaluate pore structure, and the results suggest that a decrease in contact angle was likely to be responsible for improved mercury capture over time. Contact angle measurements showed a significant change of more than 10 degrees, indicating greater attraction to mercury for the used pellets due to deposited mercuric oxide. ICP and TGA analyses showed that mercury was captured as both elemental mercury (Hg0) and mercuric oxide (HgO). In addition, it was shown that pellets used for nearly 500 h still showed greater than 90% removal efficiency and had an average capacity of 10 mg of Hg/g based on mass balance calculations, while some pellets had a capacity over 30 mg of Hg/g according to ICP and TGA analyses. Mercuric oxide doped pellets removed 100% of elemental mercury without pretreatment. The superior mercury removal efficiency combined with various advantages of the novel composite demonstrates its use as an effective alternative to conventional activated carbon injection technology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号