首页 | 本学科首页   官方微博 | 高级检索  
     


Implementing gate operations between uncoupled qubits in linear nearest neighbor arrays using a learning algorithm
Authors:Rudrayya Chowdary Garigipati  Preethika Kumar
Affiliation:1. Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS, 67260, USA
Abstract:We propose a new scheme to implement gate operations in a one dimensional linear nearest neighbor array, by using dynamic learning algorithm. This is accomplished by training quantum system using a back propagation technique, to find the system parameters that implement gate operations directly. The key feature of our scheme is that, we can reduce the computational overhead of a quantum circuit by finding the parameters to implement the desired gate operation directly, without decomposing them into a sequence of elementary gate operations. We show how the training algorithm can be used as a tool for finding the parameters for implementing controlled-NOT (CNOT) and Toffoli gates between next-to-nearest neighbor qubits in an Ising-coupled linear nearest neighbor system. We then show how the scheme can be used to find parameters for realizing swap gates first, between two adjacent qubits and then, between two next-to-nearest-neighbor qubits, in each case without decomposing it into 3 CNOT gates. Finally, we show how the scheme can be extended to systems with non-diagonal interactions. To demonstrate, we train a quantum system with Heisenberg interactions to find the parameters to realize a swap operation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号