首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular‐Level Investigation of Critical Gap Size between Catalyst Particles and Electrolyte in Hydrogen Proton Exchange Membrane Fuel Cells
Authors:J Liu  S Cui  D J Keffer
Abstract:Molecular dynamics simulations have been performed to study the structure and transport at the electrode/electrolyte interface in hydrogen‐based proton exchange membrane fuel cells. We examine the wetting of catalyst surfaces that are not immediately adjacent to a Nafion membrane, but rather are separated from the membrane by a hydrophobic gap of carbon support surface (graphite). A mixture of Nafion, water and hydronium ions is able to wet small gaps (7.4 Å) of graphite and reach the catalyst surface, providing a path for proton transport from the catalyst to the membrane. However, for gaps of 14.8 Å, we observe no wetting of the graphite or the catalyst surface. Using a coarse‐grained model, we found that the presence of a graphite gap of 7.4 Å width slowed down the transport of water by at least an order of magnitude relative to a system with no gap. The implication is that catalyst particles that are not within nominally 1 nm of either the proton exchange membrane or recast ionomer in the electrode leading to the membrane do not possess a path for efficient proton transport to the membrane and consequently do not contribute significantly to power production in the fuel cell.
Keywords:Fuel Cell  Electrode  Electrolyte  Interface  Nafion  Molecular Dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号