首页 | 本学科首页   官方微博 | 高级检索  
     

交互式容积卡尔曼滤波及其应用交互式容积卡尔曼滤波及其应用
引用本文:于浛 宋申民 王硕. 交互式容积卡尔曼滤波及其应用交互式容积卡尔曼滤波及其应用[J]. 控制与决策, 2015, 30(9): 1660-1666
作者姓名:于浛 宋申民 王硕
作者单位:哈尔滨工业大学航天学院,哈尔滨150001.
基金项目:

国家自然科学基金项目(61174037);国家自然科学基金创新群体项目(61021002).

摘    要:

针对非线性系统模型参数未知情况下的状态估计问题, 提出一种融合极大后验估计的交互式容积卡尔曼滤波算法(InCKF). 该算法利用二阶斯特林插值公式和无迹变换对非线性函数的近似思想, 实现对模型未知参数的确定, 从而使滤波算法摆脱对模型参数精确已知的依赖, 并通过容积卡尔曼滤波算法完成状态估计和量测更新. 仿真结果表明, 相比于经典的参数扩维方法, InCKF 算法具有更高的精度和更强的数值稳定性.



关 键 词:

非线性滤波|容积卡尔曼滤波|极大后验估计|模型不确定性

收稿时间:2014-06-09
修稿时间:2014-12-31

Interaction cubature Kalman filter and its application
YU Han SONG Shen-min WANG Shuo. Interaction cubature Kalman filter and its application[J]. Control and Decision, 2015, 30(9): 1660-1666
Authors:YU Han SONG Shen-min WANG Shuo
Abstract:

For the problem of states estimation of nonlinear systems with respect to unknown parameters, a filter named interaction cubature Kalman filter(InCKF) is proposed. The novel filter is consisted of multiple concurrent CKFs interlacing with a maximum posteriori(MAP) estimator. By taking advantage of special properties of second order of Stirling’s interpolation and unscented transformation to approximate nonlinear functions, the unknown parameters are estimated and the performance of InCKF does not depend on the precision of model parameters. Furthermore, the states of system are estimated by using the cubature Kalman filter(CKF). The simulation results show that the InCKF is more accurate and stabilized than the classical method of state augmentation in the situation that model parameters are unknown.

Keywords:

nonlinear filter|cubature Kalman filter|maximum a posteriori|model uncertainty

本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号