首页 | 本学科首页   官方微博 | 高级检索  
     


Artist-Directed Inverse-Kinematics Using Radial Basis Function Interpolation
Authors:Charles F Rose III  Peter-Pike J Sloan  & Michael F Cohen
Affiliation:Microsoft Research
Abstract:One of the most common tasks in computer animation is inverse-kinematics, or determining a joint configuration required to place a particular part of an articulated character at a particular location in global space. Inverse-kinematics is required at design-time to assist artists using commercial 3D animation packages, for motion capture analysis, and for run-time applications such as games.
We present an efficient inverse-kinematics methodology based on the interpolation of example motions and positions. The technique is demonstrated on a number of inverse-kinematics positioning tasks for a human figure. In addition to simple positioning tasks, the method provides complete motion sequences that satisfy an inverse-kinematic goal. The interpolation at the heart of the algorithm allows an artist's influence to play a major role in ensuring that the system always generates plausible results. Due to the lightweight nature of the algorithm, we can position a character at extremely high frame rates, making the technique useful for time-critical run-time applications such as games.
Keywords:Image-based modeling/rendering  projective geometry  vanishing line  panoramic image  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号