首页 | 本学科首页   官方微博 | 高级检索  
     


In silico allicin induced S-thioallylation of SARS-CoV-2 main protease
Authors:Shamasoddin Shekh  K Kasi Amarnath Reddy
Affiliation:Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, India
Abstract:Coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused due to new coronavirus infection with 3716075 deaths across the world as reported by the World Health Organization (WHO). SARS-CoV-2 main protease (Mpro) plays a vital role in the replication of coronavirus and thus an attractive target for the screening of inhibitors for the therapy of COVID-19. The preclinical drugs ebselen and PX-12 are potent inhibitors of SARS-CoV-2 Mpro and covalently modifies the active site Cys-145 residue of Mpro through selenosulfide/disulfide. In the current report, using virtual screening methods, reactive sulfur species allicin is subjecting for covalent docking at the active site of SARS-CoV-2 Mpro using PX-12 as a benchmark reference compound. The results indicate that allicin induces dual S-thioallylation of Cys-145 and Cys-85/ Cys-156 residues of SARS-CoV-2 Mpro. Using density functional theory (DFT), Gibbs free energy change (DG) is calculated for the putative reactions between N-acetylcysteine amide thiol and allicin/allyl sulfenic acid. The overall reaction is exergonic and allyl disulfide of Cys-145 residue of Mpro is involved in a sulfur mediated hydrogen bond. The results indicate that allicin causes dual S-thioallylation of SARS-CoV-2 Mpro which may be of interest for treatment and attenuation of ongoing coronavirus infection.
Keywords:Allicin  SARS-CoV-2 main protease  virtual screening  S-thioallylation  COVID-19
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号