首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrodynamic characteristics and optimization design of a bio-inspired anti-erosion structure for a regulating valve core
Affiliation:1. Mechatronic Engineering Institution, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China;2. School of Electrical and Control Engineering, Xuzhou Institute of Technology, Xuzhou, Jiangsu, 221018, China
Abstract:Cavitation is the main failure mode of coal liquefaction regulating valve, which seriously limits the service life of the regulating valve. In order to restrain cavitation in the regulating valve, a bio-inspired anti-cavitation structure inspired by the red willow of valve core is proposed. Distributions of pressure, velocity and vapor volume fraction in the bionic valve under different openings (30%, 40%, 50%, and 60%) and inlet pressures (2.0MPa, 3.0MPa, 4.0MPa, and 5.0MPa) are discussed. In addition, the parameters of bionic valve structure are optimized using NSGA-II algorithm, the field synergy principle is applied to evaluate the flow field optimization in the bionic valve. The results show that the cavitation area and cavitation length in these bionic structures are reduced significantly compared with the traditional smooth structure. And the anti-cavitation performance of the trench structure is the best, when the inlet pressure is 3 MPa and the opening is 30%, the vapor volume is 0.10 mm3, the vapor volume is reduced by 98.07% compared with traditional smooth structure. Convex hull structure is the second. When the inlet pressure is 5.0 MPa, the vapor volume of the traditional smooth structure is as high as 148 mm3, and the vapor volume of the convex hull structure is 35 mm3, the vapor volume of the trench structure is 19 mm3. Through the field synergy theory to evaluate the internal flow field, it is found that the effective viscosity coefficient in the traditional smooth structure regulating valve varies from 0.7 to 1.2, that of the bionic trench valve changes from 0.1 to 0.5, both the flow resistance and energy consumption in the trench structure valve are reduced. It is proved that the bionic trench structure of the valve core can effectively improve anti cavitation performance and optimize the internal flow resistance of the flow field, which is of great significance to the optimal design of the control valve.
Keywords:Cavitation flow  Regulating valve  Bio-TRIZ  The field synergy drag reduction model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号