首页 | 本学科首页   官方微博 | 高级检索  
     

自组织前向神经网络与非线性动态系统模化
引用本文:申 弢,韩守木,黄树红,刘德昌. 自组织前向神经网络与非线性动态系统模化[J]. 控制理论与应用, 2000, 17(1): 96-98
作者姓名:申 弢  韩守木  黄树红  刘德昌
作者单位:华中理工大学动力工程系·武汉,430074
摘    要:将自组织学习过程引入到前向网络的训练中,提出了一种新的三层前向神经网络的训练方法,训练过程首先利用自组织分族算法确定隐含层结点的数目以及权值,然后通过求解线性最小二乘问题估计输出层权值,自组织过程产生的激活权值对输入数据具有一种特征变换的功能,利用该方法训练的网络可以称之为自组织前向网络(SOFN)。文中通过实际非线性动态系统建模的例子,说明了SOFN网络具有良好性能。

关 键 词:神经网络 训练算法 非线性系统 自组织学习
收稿时间:1998-04-06
修稿时间:1999-11-16

Self Organizing Feedforward Neural Network and Modeling of Nonlinear Dynamical System
SHEN Tao,HAN Shou-mu,HUANG Shu-hong and LIU De-chang. Self Organizing Feedforward Neural Network and Modeling of Nonlinear Dynamical System[J]. Control Theory & Applications, 2000, 17(1): 96-98
Authors:SHEN Tao  HAN Shou-mu  HUANG Shu-hong  LIU De-chang
Affiliation:Department of Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R.China;Department of Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R.China;Department of Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R.China;Department of Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R.China
Abstract:In this paper a new learning procedure of MLP is presented which named as self organizing feedforward neural Network (SOFN). The optimization of weights is implemented layer by layer. At the stage of training hidden weights, an unsuperivsed self organizing clustering is introduced, then the weights of output layer are estimated by supervised least square algorithms. With self organizing stage, the number of hidden nodes can be determined automatically, furthermore, the hidden layer weights created by clustering work as a feature transformation matrix for input vectors. Two examples are given to show the feasibility and advantages of the approach, which is particularly suitable for modeling of nonlinear dynamical system.
Keywords:neural network  training algorithm  nonlinear system  self organization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号