首页 | 本学科首页   官方微博 | 高级检索  
     


Improved nerve cuff electrode recordings with subthreshold anodic currents
Authors:M Sahin  DM Durand
Affiliation:Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-4197, USA.
Abstract:A method has been developed for improving the signal amplitudes of the recordings obtained with nerve cuff electrodes. The amplitude of the electroneurogram (ENG) has been shown to increase with increasing distance between the contacts when cuff electrodes are used to record peripheral nerve activity 9]. The effect is directly related to the propagation speed of the action potentials. Computer simulations have shown that the propagation velocity of action potentials in a length of a nerve axon can be decreased by subthreshold extracellular anodic currents. Slowing the action potentials is analogous to increasing the cuff length in that both result in longer intercontact delays, thus, larger signal outputs. This phenomenon is used to increase the amplitudes of whole nerve recordings obtained with a short cuff electrode. Computer simulations predicting the slowing effect of anodic currents as well as the experimental verification of this effect are presented. The increase in the amplitude of compound action potentials (CAP's) is demonstrated experimentally in an in vitro preparation. This method can be used to improve the signal-to-noise ratios when recording from short nerve segments where the cuff length is limited.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号