首页 | 本学科首页   官方微博 | 高级检索  
     

基于悬臂梁增强型光声光谱的SF_6特征分解组分H_2S定量检测
引用本文:张晓星,李新,刘恒,李健,程政. 基于悬臂梁增强型光声光谱的SF_6特征分解组分H_2S定量检测[J]. 电工技术学报, 2016, 0(15): 187-196. DOI: 10.3969/j.issn.1000-6753.2016.15.022
作者姓名:张晓星  李新  刘恒  李健  程政
作者单位:1. 输变电装备及系统安全与新技术国家重点实验室 重庆大学 重庆 400044;2. 输变电装备及系统安全与新技术国家重点实验室 重庆大学 重庆 400044; 国网重庆南岸供电公司 重庆 400060;3. 输变电装备及系统安全与新技术国家重点实验室 重庆大学 重庆 400044; 77109部队 重庆 400074
基金项目:国家重点实验室自主研究资助项目(2007DA10512713207)。
摘    要:H_2S作为SF_6分解产生的关键特征组分,能够有效反映SF_6气体绝缘电气设备内部绝缘故障的严重程度及故障是否涉及固体绝缘材料。采用新型硅微悬臂梁传声器与分布反馈式半导体激光器搭建了悬臂梁增强型光声光谱痕量气体检测系统,以H_2S气体v1+v2+v3泛频吸收谱带中心波数为6 336.62 cm-1的吸收谱线作为研究对象,仿真研究了H_2S气体的红外吸收特性,试验研究了H_2S气体悬臂梁增强型光声光谱响应特性,采用最小二乘回归分析了H_2S气体光声信号与其体积分数的关系。结果表明,在气体吸收未饱和的情况下,光声信号强度与H_2S体积分数之间存在良好的线性关系,系统对N2中痕量H_2S的检测下限为0.84×10-6,对SF_6中痕量H_2S的检测下限为1.75×10-6。研究结果为采用SF_6分解组分法判断设备内部绝缘故障类型和严重程度提供了有力的数据支持。

关 键 词:SF6 特征分解组分  H2 S  悬臂梁增强型光声光谱  定量检测

The Quantitative Detection of SF6 Characteristic Decomposition Component H2 S Based on Cantilever Enhanced Photoacoustic Spectrometry
Abstract:As one of the key characteristic components caused by SF6 decomposition in the SF6 gas insulated electrical equipment,H2 S could effectively reflect the severity of the internal insulation faults and whether the faults involve solid insulation material. The paper builds a cantilever enhanced photoacoustic( PA)spectrometry ( CEPAS)trace gas detection system based on the micro cantilever microphone and distributed feedback-diode laser. The characteristic absorption line of H2S with a central wavenumber of 6 336. 62 cm -1 in v1 + v2 + v3 overtones absorption band is selected as the study objective. The frequency response of the CEPAS detection system is tested,and the quantitative relationship between the PA signal amplitude and the gas concentration is studied. The results show that there is a good linear relationship between the PA signal amplitude and the gas concentration. The detection limit of the CEPAS system for tracing H2S in N2 is 0. 84*10 -6,and H2S in SF6 is 1. 75*10 -6. It may be a powerful data supplement for the SF6 decomposition components method in recognizing the internal fault category and severity of the SF6 gas insulation electrical equipment.
Keywords:SF6 characteristic decomposition components  H2S  cantilever enhanced photoacoustic spectrometry  quantitative detection
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号