首页 | 本学科首页   官方微博 | 高级检索  
     


The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system
Authors:Jizu Lv  Minli Bai  Wenzheng Cui  Xiaojie Li
Affiliation:(1) State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China;(2) School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
Abstract:Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号