首页 | 本学科首页   官方微博 | 高级检索  
     


Water‐Dispersible Candle Soot–Derived Carbon Nano‐Onion Clusters for Imaging‐Guided Photothermal Cancer Therapy
Authors:Wei Sun  Xiaodong Zhang  Hao‐Ran Jia  Ya‐Xuan Zhu  Yuxin Guo  Ge Gao  Yan‐Hong Li  Fu‐Gen Wu
Abstract:Herein, water‐dispersible carbon nano‐onion clusters (CNOCs) with an average hydrodynamic size of ≈90 nm are prepared by simply sonicating candle soot in a mixture of oxidizing acid. The obtained CNOCs have high photothermal conversion efficiency (57.5%), excellent aqueous dispersibility (stable in water for more than a year without precipitation), and benign biocompatibility. After polyethylenimine (PEI) and poly(ethylene glycol) (PEG) modification, the resultant CNOCs‐PEI‐PEG have a high photothermal conversion efficiency (56.5%), and can realize after‐wash photothermal cancer cell ablation due to their ultrahigh cellular uptake (21.3 pg/cell), which is highly beneficial for the selective ablation of cancer cells via light‐triggered intracellular heat generation. More interestingly, the cellular uptake of CNOCs‐PEI‐PEG is so high that the internalized nanoagents can be directly observed under a microscope without fluorescent labeling. Besides, in vivo experiments reveal that CNOCs‐PEI‐PEG can be used for photothermal/photoacoustic dual‐modal imaging‐guided photothermal therapy after intravenous administration. Furthermore, CNOCs‐PEI‐PEG can be efficiently cleared from the mouse body within a week, ensuring their excellent long‐term biosafety. To the best of the authors' knowledge, the first example of using candle soot as raw material to prepare water‐dispersible onion‐like carbon nanomaterials for cancer theranostics is represented herein.
Keywords:candle soot  carbon nano‐onion  photoacoustic imaging  photothermal therapy  theranostic agent
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号